Skin Treatment


Electroporation is the transitory structural perturbation of lipid bilayer membranes due to the application of high voltage pulses. Its application to the skin has been shown to increase transdermal drug delivery by several orders of magnitude. Moreover, electroporation, used alone or in combination with other enhancement methods, expands the range of drugs (small to macromolecules, lipophilic or hydrophilic, charged or neutral molecules) which can be delivered transdermally. Molecular transport through transiently permeabilized skin by electroporation results mainly from enhanced diffusion and electrophoresis. The efficacy of transport depends on the electrical parameters and the physicochemical properties of drugs. The in vivo application of high voltage pulses is well tolerated but muscle contractions are usually induced. The electrode and patch design is an important issue to reduce the discomfort of the electrical treatment in humans.

Methodology/Principal Findings

This study investigates intradermal DNA electrovaccination in detail and describes the effects on expression of the vaccine antigen, plasmid persistence and the local tissue environment. Gene profiling of the vaccination site showed that the combination of DNA and electroporation induced a significant up-regulation of pro-inflammatory genes. In vivo imaging of luciferase activity after electrovaccination demonstrated a rapid onset (minutes) and a long duration (months) of transgene expression. However, when the more immunogenic prostate specific antigen (PSA) was co-administered, PSA-specific T cells were induced and concurrently the luciferase expression became undetectable. Electroporation did not affect the long-term persistence of the PSA-expressing plasmid